5 Important Instructional Strategies

Tag words from my blog

An instructional strategy is something that an instructional designer (or educator) uses as a vehicle to deliver information.  Some instructional strategies require the Internet like WebQuests, HyperInquiry, and well-designed educational videogames, while others are used within the mind metacognitively like mnemonics for memory.  However, the vast majority are used to present instruction in multimodal formats.  Other strategies include academic controversy, advance organizers, chunking of information, imagery, and spatial strategies (i.e., Frames Type I and II matrix, concept mapping). The best ones are based on cognitive science and learning theory.  Instructional strategies differ from learning strategies in that the latter are for the learner to use for encoding information (also known as a cognitive strategy).  Here are some useful cognitive strategies for enhancing learning and retention: making it meaningful, organize the information, visualize it, and elaborate on it.  In my opinion, learning strategies should be embedded within instruction and modeled by the teacher to increase use.

Instructional strategies are based on the goals and learning objectives identified during the analysis phase in the instructional design process.  The instructional strategies must match the intended end behaviors, condition, and criteria of the objectives.  For example, if you’re developing an online course, it would be important to include an advance organizer (AO) for each unit to build a bridge between the information learned and the new content.  This bridging strategy is based on Ausubel’s subsumption theory  because it taps into your prior knowledge and adds new information in a structured way to build schema on the topic (West, Farmer, & Wolff, 1991).  AOs are written like an abstract with all the key information but brief.  They have seven different features that are critical to making this more than simply an introduction to a unit; for example, AOs must encourage students to tap into their prior knowledge on the topic.

Concept mapping is the most commonly used spatial strategy.  It makes a graphical depiction of the content in a connected frame.  There are different types of concept maps based on the type of information you need to teach: spider maps for different categories (typologies), chain map for linear processes, hierarchy map for complex topics and their interrelationships of the system, subsystem, and parts (West, Farmer, & Wolff, 1991).  This is related to the instructional strategy of chunking information into meaningful units.  You need to chunk the information before you map it.

Chunking and concept mapping are based on some of the same learning theories such as Sweller’s cognitive load theory, Miller’s seven-plus-or-minus-two principle, and Baddeley’s working memory model. All of these theories describe a limited capacity of working memory.  Cognitive load theory proposes several conditions to optimize learning such as reducing the amount of “noise” (extraneous elements in the broad sense) during a learning event.  For example, long lectures need to be reduced to five minutes or less due to the human brain’s inability to pay attention, process, and store lengthy amounts of information.

Other types of spatial strategies are frames, type one and two. Frames, type I is described by Reigeluth (1983) as a combination of ‘big picture and telescoping’.  Instructional designers use frames, type I as a way to unpack and emphasize the big ideas of a unit of information into a meaningful structure to build on existing schema.  Frames, type II is a rule-bound matrix and requires higher-order thinking skills to complete, whereas frames, type one, is for simple recall, comprehension, and application (West, Farmer, & Wolff, 1991).  Usually, the information for both types of frames is presented in a 2-D matrix. These instructional strategies are also based on the theory of cognitive load in that the structure and relationships of the information will reduce extraneous thought processing and instead focus on the intrinsic and germane elements.  It’s also based on schema theory, which was first posited by Piaget.  Frames, type I and II, provide the structure to build on existing schema.  Of all the instructional strategies, these five are the ones that I rely on the most as an instructional designer.


Reigeluth, C. M. (1983).  The elaboration theory of instruction. In C. M. Reigeluth (Ed.) Instructional-design theories and models: An overview of their current status (pp. ).  Hillsdale, NJ: Lawrence Erlbaum Associates, Publishers.

West, C. K., Farmer, J. A., & Wolff, P. M. (1991). Instructional design: Implications from cognitive science. Englewood Cliffs, NJ: Prentice Hall.

Author: teacherrogers

Content developer, instructional designer, trainer, and researcher

Thanks for visiting my blog! Please leave a message.

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s