Cognitive Perspective of Flow Theory and Video Games

Icon of game consul

Csikszentmihalyi’s flow theory (1990) is based on several interrelated psychological constructs: ability, attitude, cognition, emotion, motivation, and personality. When perfectly combined in a task, they catapult a person into a state of flow commonly known as being in the zone. Csikszentmilhalyi refers to this as an optimal experience. He found that people around the world had shared descriptions for flow such as the joy it yields, episodes of unfettered concentration, suspension of time, and the spontaneous automaticity during an experience. Flow occurs differently for different people. For example, individuals who aren’t good at playing games, or find the game uninteresting, wouldn’t experience flow during gameplay.

As an instructional designer, I want to create optimal learning experiences. Flow theory has components similar to those used for effective instruction based on cognitivism. For instance, Sweller’s cognitive load theory (1998) recommends reducing distractions (extraneous elements) and delivering germane and intrinsic elements of instruction in manageable chunks. This correlates to the component of enjoyment in flow theory in that a person can only fully enjoy a task if they’re capable of completing it. Flow theory has eight main components that engender enjoyment: manageable tasks, deep concentration, clear goals, immediate feedback, effortless involvement, learner autonomy, metamorphosis of self, and suspension of time. These components parallel best practices for instruction.

To make learning more enjoyable, I’d apply Miller’s seven-plus-or-minus-two principle (1956) regarding the limitations surrounding the amount of input that can be remembered at any given time. Adherence to Miller’s principle will make a task more manageable. Additionally, I’d use Gagne’s (1985) nine events of learning to establish the optimal cognitive conditions for effective learning to occur. Three of Gagne’s events (state objective, provide feedback, and provide practice) closely correlate with the enjoyment phenomena of flow theory (task has clear goals, task provides immediate feedback, and sense of control). Furthermore, the aspects of clear goals and feedback also correlate to self-regulation of learning. Self-regulation processes include rehearsal, selection of important information, and metacognitive strategies. The selection of important information aids deep concentration for possible enjoyment of an optimal experience.

A vehicle for cognitive learning experiences with flow potential would be well-designed educational games. Elements of good game design include goal-oriented, stimulating, active learning that is anchored in instruction (Shute, Reiber, & Van Eck, 2012). While playful (fun) learning has similar elements, the key difference is active learning, as many playful activities passively follow the teacher’s directives. Another difference is the challenge aspect of gaming that adapts to the learners’ abilities, whereas playful learning is freeform. A challenge provides learners with intrinsic motivation and the pathway to achieve learner autonomy to make their own way through the world. This is different from traditional learning activities that are teacher directed. Chatti, Jarke, and Specht (2010) described this as a knowledge push, whereas knowledge-pull is akin to gaming where the learner gravitates toward knowledge.

Videogames, in particular, have similar characteristics for creating a context for flow. According to Csikszentmihalyi, clarity, centering, choice, commitment, and challenge are the characteristics necessary for a unified flow experience. In my opinion, these are the flow characteristics that can be found in gameplay: 1) clarity with explicit gaming context, rules, feedback, and goals, 2) centering with narrative providing storyline, 3) choice with multilevels of play, numerous episodes, variety of characters and actions, and guilds, 4) commitment via resets (do-overs) and new virtual identity, and 5) challenge via incremental task difficulty and reward system. The challenge for instructional designers is to determine how to use the potentiality of videogames to engender flow for educational purposes. Based on the aforementioned research on cognitive learning best practices and flow theory, we have the theoretical basis to move forward.

Sandra Rogers

References

Chatti, M. A., Jarke, M., & Specht, M. (2010). The 3P learning model. Educational Technology and Society, 13(4), 74-85.

Csikszentmihalyi, M. (1990). Flow: The psychology of optimal experience. New York, NY: Harper & Row.

Gagné, R. M. (1985). The Conditions of Learning. New York, NY: Holt, Rinehart, & Winston.

Miller, G. A. (1956). The magical number seven, plus-or-minus two: Some limits on our capacity
for processing information. Psychological Review, 63, 81-97.

Shute, V. J., Rieber, L. P., & Van Eck, R. (2012).   Games…and…Learning. In R. A. Reiser & J. V. Dempsey   (Eds.), Trends and issues in instructional design and   technology (pp. 321-332). Upper Saddle River, NJ: Merrill   Prentice Hall.

Sweller, J., Van Merriënboer, J., & Paas, F. (1998). Cognitive architecture and instructional design. Educational Psychology Review 10(3), 251–296. doi:10.1023/A:1022193728205

Where Learning Happens

Young boy riding a wave
My Godchild Surfing (Photo source: Ed Compo)

During the flow of a task, at the edge of our zone of proximal development (ZPD), via our selective attention, rehearsal, and metacognition is where learning happens.  I acknowledge that this description short shrifts other important cognitive and behavioral learning processes; nevertheless, these are what I recognize as most important in creating an optimal learning experience. To be certain, many other constructs come into play such as ability, attitude, emotion, motivation, and personality.

Csikszentmihalyi’s (1990) flow theory describes the conditions for flow.  It occurs when there are rules, goals, feedback, and potential for participant control. His flow theory is not specific to learning, but rather generic to all of life’s activities. He described flow as an optimal experience; I translate that to “being in the zone”, which comes to us from popular culture (not the ZPD). In reading his work, I saw similarities to learning in his descriptions of flow in how it motivates one to higher levels of performance. For example, for an activity to engender enjoyment, it should provide manageable tasks, deep concentration, clear goals, immediate feedback, effortless involvement, learner autonomy, metamorphosis of self, and suspension of time. As an instructional designer, I want to utilize these aspects of flow to create optimal learning experiences.

Vygotsky’s (1978) proposed that learning takes place at the edge of one’s understanding with the help of others or a support system. This is known as the ZPD. This means that learning will not take place if the activity is too easy or too difficult. Csikszentmihalyi also described flow occurring for activities within a channel with just the right type of challenge to match a person’s skills. This channel exists somewhere between anxiety and boredom. Educators understand the need for differentiated instruction to meet each individual learner’s needs, but the reality of trying to make this happen in a classroom of diverse learners is almost impossible to do all of the time. Grouping according to ability is a solution but can cause equity issues if overdone. Computer-adaptive software programs, peer mentoring, cross-age tutoring, well-designed educational games, and pull-out programs for gifted or remediation are some solutions to providing the ZPD for our learners.

Self-regulation processes include rehearsal, selection of important information, and metacognitive strategies. Self-regulation aids working memory by stretching the time the information is held in storage, as well as enhancing transfer to and retrieval from long-term memory. A helpful example of self-regulation would be self-directed speech. Students might not think this is helpful, so an educator should model this behavior or otherwise teach it explicitly. Other useful learning strategies specific to self-regulation are mnemonics, reciprocal teaching, and reflection (written, verbal, or artistic formats).

Where do you think learning occurs? I’d love to hear your thoughts on this topic.

Sandra Rogers

References

Csikszentmihalyi, M. (1990). Flow: The psychology of optimal experience. New York, NY: Harper & Row.

Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.