Where Learning Happens

Young boy riding a wave
My Godchild Surfing (Photo source: Ed Compo)

During the flow of a task, at the edge of our zone of proximal development (ZPD), via our selective attention, rehearsal, and metacognition is where learning happens.  I acknowledge that this description short shrifts other important cognitive and behavioral learning processes; nevertheless, these are what I recognize as most important in creating an optimal learning experience. To be certain, many other constructs come into play such as ability, attitude, emotion, motivation, and personality.

Csikszentmihalyi’s (1990) flow theory describes the conditions for flow.  It occurs when there are rules, goals, feedback, and potential for participant control. His flow theory is not specific to learning, but rather generic to all of life’s activities. He described flow as an optimal experience; I translate that to “being in the zone”, which comes to us from popular culture (not the ZPD). In reading his work, I saw similarities to learning in his descriptions of flow in how it motivates one to higher levels of performance. For example, for an activity to engender enjoyment, it should provide manageable tasks, deep concentration, clear goals, immediate feedback, effortless involvement, learner autonomy, metamorphosis of self, and suspension of time. As an instructional designer, I want to utilize these aspects of flow to create optimal learning experiences.

Vygotsky’s (1978) proposed that learning takes place at the edge of one’s understanding with the help of others or a support system. This is known as the ZPD. This means that learning will not take place if the activity is too easy or too difficult. Csikszentmihalyi also described flow occurring for activities within a channel with just the right type of challenge to match a person’s skills. This channel exists somewhere between anxiety and boredom. Educators understand the need for differentiated instruction to meet each individual learner’s needs, but the reality of trying to make this happen in a classroom of diverse learners is almost impossible to do all of the time. Grouping according to ability is a solution but can cause equity issues if overdone. Computer-adaptive software programs, peer mentoring, cross-age tutoring, well-designed educational games, and pull-out programs for gifted or remediation are some solutions to providing the ZPD for our learners.

Self-regulation processes include rehearsal, selection of important information, and metacognitive strategies. Self-regulation aids working memory by stretching the time the information is held in storage, as well as enhancing transfer to and retrieval from long-term memory. A helpful example of self-regulation would be self-directed speech. Students might not think this is helpful, so an educator should model this behavior or otherwise teach it explicitly. Other useful learning strategies specific to self-regulation are mnemonics, reciprocal teaching, and reflection (written, verbal, or artistic formats).

Where do you think learning occurs? I’d love to hear your thoughts on this topic.

Sandra Rogers

References

Csikszentmihalyi, M. (1990). Flow: The psychology of optimal experience. New York, NY: Harper & Row.

Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.

Cognitive Benefits of ePortfolios

What Educators Need to Know about Working Memory

 

Working memory is a process in the brain where meaning is constructed from information received and potential self-regulation of memory occurs. It also serves as a temporary storage device. Working memory is limited to the amount of information it can hold and the duration it can remember. According to Miller (1956), humans are capable of remembering only seven plus-or-minus two pieces of information in our memory at any given time without the help of learning strategies. If self-regulation of the information is not engaged, working memory is limited to three seconds duration in the auditory registers (Ward, 2010). Ward notes that young children’s ability to remember information is more stringent than that of adults. This age difference and the other limitations should be considered when designing and/or delivering instruction. For example, instruction of content should also include strategies to help students learn (e.g., mnemonics).

Baddeley and Hitch (1974; Baddeley, 1986) developed a model for working memory to explain the internal processing of information. Its main components are sensory register, working memory, and long-term memory. The subcomponents are an executive control system, an articulatory loop, and a visual-spatial sketchpad. The executive control system selects information, plans, and then transfers information to long-term memory. The articulatory loop consists of the auditory and articulatory processes such as rehearsal. The visual-spatial sketchpad consists of the visual and spatial processes, which can also include rehearsal. An important caveat for educators is that some learners don’t intrinsically know to select only the important information for long-term storage.  Therefore, it would be helpful for educators to preview documents and highlight key points prior to assigning the reading.

Numerous factors and self-regulatory processes affect working memory. Self-regulation processes include rehearsal, selection of important information, and metacognitive strategies (e.g., making it meaningful, organizing, visualization, and elaboration). Self-regulation aids working memory by stretching the time the information is held in storage, as well as enhancing transfer to and retrieval from long-term memory. A helpful example of self-regulation would be self-directed speech. Students might not think this is helpful, so an educator should model this behavior or otherwise teach it explicitly. The National Research Council (Bransford, Brown, and Cocking, 1999) defines metacognition as taking “the form of an internal conversation.”

Here are some factors that hinder working memory:

  1. construction of memory requires attribution and inference and therefore can cause distortions as to the correct source,
  2. articulatory suppression can cause forgetting of non-articulated information,
  3. physical impairments can cause faulty encoding of information,
  4. multitasking influences the depth of learning,
  5. merely trying to remember something can conflict with other memories (Ward); and
  6. cognitive overload can occur when information is presented with distracting enhancements like background music or elaborative fonts.

There are different types of memories: declarative (episodic and semantic) and non-declarative memory (implicit) (Ward). Episodic memory refers to a person’s personal events, whereas semantic memory refers to conceptual knowledge. Ward stated that episodic memory is stronger than semantic memory; therefore, it’s imperative to teach students metacognitive strategies for encoding conceptual knowledge into long-term memory. These strategies should be embedded in the curriculum after they’re presented through direct instruction.

Note: For more information on the information processing system as it relates to instructional design see my blog on The Basics.

References

Baddeley, A. D. (1986). Working memory: Theory and practice. London, England: Oxford University Press.

Baddeley, A. D., & Hitch, G. (1974). Working memory. In G. H. Bower (Ed.), The psychology of learning and motivation (Vol. 8, pp. 47-90). San Diego, CA: Academic Press.

Bransford, J. D., Brown A. L., & Cocking R. R. (1999). How people learn: Brain, mind,experience, and school. Washington, DC: National Academy Press.

Miller, G. A. (1956). The magical number seven, plus-or-minus two: Some limits on ourcapacity for processing information. Psychological Review, 63, 81-97

Ward, J. (2010). The student’s guide to cognitive neuroscience. New York, NY: Psychological Press.

Instructional Design for Human Learning: The Basics

The information processing theory explains how humans perceive, internalize, and remember information. The Atkinson and Shriffin’s (1968) information processing model included three systems: sensory memory, short-term memory, and long-term memory. This was a linear process, which has since been replaced with the nonlinear working memory model (Baddeley & Hitch, 1974) and other connectionist processes that align with current cognitive neuroscience views of human learning. Instructional designers should focus on the following concepts of information processing to improve learning and retention: the importance of gaining students’ attention, the limitation to working memory, and how to reduce cognitive load.

First, paying attention to instruction is paramount to learning. Bruning, Schraw, and Norby (2011, p.15) define attention as “the mental energy used to perceive, think, and understand.” A person’s attention is limited, selective, but can be self-regulated. There are several distracters which compete for a person’s attention such as noise outside the classroom, unmet physiological needs (e.g., hunger), and psychological aspects (e.g., motivational factors). Therefore, students need to selectively focus on the key elements of the information to be learned. It’s important to explicitly tell students about the importance of attention and teach them how to focus in order for them to be successful. Bruning et al. (p. 35), refer to this as “managing their resources.” They also encourage us to help students transfer these strategies to other content, as this may not occur to them without prompting. As instructional designers, we’re trained to use Gagne’s (1985) nine events of instruction, the first of which is to gain the learner’s attention. Some of the various instructional strategies to achieve this goal are to manipulate the motion, size, intensity, novelty, and/or incongruity of the information.

Second, consider the limitations to working memory and embed metacognitive strategies to help students learn the content. According to Miller (1956), humans are capable of remembering only seven plus-or-minus two pieces of information in our memory at any given time without the help of learning strategies. Therefore, it’s imperative for educators and/or the instruction to provide students with memory strategies to expand this capability or otherwise limit the amount of information provided at any given time. A sampling of learning strategies include chunking, imagery, mnemonics, and rehearsal. Instructional designer should identify specific learning strategies to help students stretch their working memory according to the content, learning environment, and age-appropriateness.

Lastly, due to the competition on a learner’s attention and the limitations to working memory, consider reducing the cognitive load when designing lessons. The cognitive load theory is attributed to Baddeley’s working memory model. Theorists took his model a step further to explain the various intrinsic and extraneous demands on learning information (Sweller, Van Merriënboer, & Paas, 1998). Cognitive load refers to the amount of effort required to process information. For example, difficult information requires more effort due to its intrinsic structure. Extraneous demands refer to how the information is presented during instruction. Bruning et al., explained how intrinsic cognitive load is unalterable until you properly learn something, so that it becomes part of your schema. Instructional designers need to consider the complexity of the content, instructional environment, and the characteristics of the learners in order to avoid cognitive overload. Here are some tips:

  • slow the speed of delivery of complex concepts;
  • sequence tasks logically;
  • use a multimodal approach to delivery; and
  • segment tasks such as instructional videos in small chunks of time (e.g., five minutes).

References

Baddeley, A. D., & Hitch, G. (1974). Working memory. In G. H. Bower (Ed.), The psychology of learning and motivation (Vol. 8, pp. 47-90). San Diego, CA: Academic Press.

Sweller, J., Van Merriënboer, J., & Paas, F. (1998). Cognitive architecture and instructional design. Educational Psychology Review10(3), 251–296. doi:10.1023/A:1022193728205